28 research outputs found

    A closure theory for the split energy-helicity cascades in homogeneous isotropic homochiral turbulence

    Full text link
    We study the energy transfer properties of three dimensional homogeneous and isotropic turbulence where the non-linear transfer is altered in a way that helicity is made sign-definite, say positive. In this framework, known as homochiral turbulence, an adapted eddy-damped quasi-normal Markovian (EDQNM) closure is derived to analyze the dynamics at very large Reynolds numbers, of order 10510^5 based on the Taylor scale. In agreement with previous findings, an inverse cascade of energy with a kinetic energy spectrum like k5/3\propto k^{-5/3} is found for scales larger than the forcing one. Conjointly, a forward cascade of helicity towards larger wavenumbers is obtained, where the kinetic energy spectrum scales like k7/3\propto k^{-7/3}. By following the evolution of the closed spectral equations for a very long time and over a huge extensions of scales, we found the developing of a non monotonic shape for the front of the inverse energy flux. The very long time evolution of the kinetic energy and integral scale in both the forced and unforced cases is analyzed also.Comment: 8 pages, 3 figure

    Cascade of circulicity in compressible turbulence

    Full text link
    The purpose of this work is to investigate whether a cascading process can be associated with the rotational motions of compressible three-dimensional turbulence. This question is examined through the lens of circulicity, a concept related to the angular momentum carried by large turbulent scales. By deriving a Monin-Yaglom relation for circulicity, we show that an ``effective'' cascade of this quantity exists, provided the flow is stirred with a force having a solenoidal component. This outcome is obtained independently from the expression of the equation of state. To supplement these results, a coarse-graining analysis of the flow is performed. This approach allows to separate the contributions of the transfer and production terms of circulicity and to discuss their respective effects in the inertial range

    Passive Scalar and Scalar Flux in Homogeneous Anisotropic Turbulence

    Get PDF
    Le but de ce travail est l'étude théorique et la modélisation d'un champ scalaire passif dans une turbulence homogène anisotrope à l'aide d'une fermeture EDQNM (Eddy-Damped Quasi-Normal Markovian) adaptée à un tel contexte. Cette fermeture est une extension du modèle spectral pour le champ de vitesse de V. Mons et. al. (2015) à un champ scalaire passif et au flux scalaire, qui naît de l'interaction de gradients de vitesse et de scalaire. Des résultats généraux originaux de croissance et décroissance des énergies du scalaire et du flux en présence de gradients moyens sont ici présentés

    Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15

    Get PDF
    BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells

    Modélisation du Transport en Turbulence Homogène

    No full text
    Modelling is essential to understand and reproduce the dominant physical mechanisms occurring in natural turbulent flows such as atmospheric and oceanic ones. Indeed, the dynamics of geophysical flows results of multiple complex processes interacting with each others, at various scales, intensities, and on different characteristic times. The fine description of such flows is currently out of reach of direct numerical simulations, notably because of Reynolds numbers limitations. Consequently, we address in this thesis the modelling of homogeneous turbulence, using the spectral formalism of the eddy-damped quasi-normal Markovian (EDQNM) approximation. This first allows us to obtain results rapidly in terms of computational resources at very large Reynolds numbers, and thus to investigate separately some of the fundamental mechanisms at stake in natural turbulent flows, namely shear, mean temperature gradient, stratification, helicity, and combinations of these processes. In this framework, a two-step approach is considered: first, EDQNM is used to close the non-linear terms in the second-order moments equations, and anisotropy is then modelled through spherically-averaged tensors. This methodology is applied to the various configurations mentioned above, permits to propose new theoretical results, and to assess them numerically at large Reynolds numbers. Among the most important findings, we focused on (i) the prediction of the decay and growth laws of crucial one-point statistics such as the kinetic energy, the scalar variance, and helicity; (ii) the determination of spectral scalings; and (iii) the scale by scale distribution of anisotropy.La modélisation est essentielle pour comprendre et reproduire les phénomènes physiques dominants ayant lieu dans des écoulements turbulents naturels (atmosphériques, océaniques). En effet, la dynamique des écoulements géophysiques résulte d'interactions complexes à des échelles et intensités variées, et sur des temps différents. La description précise de tels écoulements est pour le moment hors de portée des simulations numériques directes, surtout à cause des limitations en nombre de Reynolds.C'est pourquoi dans cette thèse on s'attaque à la modélisation de la turbulence homogène avec le formalisme spectral de l'approximation EDQNM. Ceci nous permet d'obtenir des résultats rapidement en termes de ressources numériques à très grands nombres de Reynolds, et ainsi d'étudier séparément la plupart des mécanismes en jeu dans les écoulements turbulents naturels, à savoir le cisaillement, le gradient de température, la stratification, l'hélicité, et des combinaisons de ces éléments. On procède en deux étapes: tout d'abord, l'EDQNM permet de fermer les équations des moments d'ordre 2, et ensuite l'anisotropie est modélisée grâce à des tenseurs moyennés sphériquement. Cette méthode est appliquée aux différentes configurations mentionnées ci-dessus, nous permet de proposer de nouveaux résultats et de les valider numériquement à grands nombres de Reynolds. Parmi les points les plus importants, nous nous sommes concentrés sur (i) la prédiction des lois de croissance et décroissance de quantités telles que l'énergie cinétique, la variance scalaire et l'hélicité; (ii) la détermination des comportements spectraux; et (iii) la distribution d'anisotropie échelle par échelle

    Modelling of transport in homogeneous turbulence

    No full text
    La modélisation est essentielle pour comprendre et reproduire les phénomènes physiques dominants ayant lieu dans des écoulements turbulents naturels (atmosphériques, océaniques). En effet, la dynamique des écoulements géophysiques résulte d'interactions complexes à des échelles et intensités variées, et sur des temps différents. La description précise de tels écoulements est pour le moment hors de portée des simulations numériques directes, surtout à cause des limitations en nombre de Reynolds. C'est pourquoi dans cette thèse on s'attaque à la modélisation de la turbulence homogène avec le formalisme spectral de l'approximation EDQNM. Ceci nous permet d'obtenir des résultats rapidement en termes de ressources numériques à très grands nombres de Reynolds, et ainsi d'étudier séparément la plupart des mécanismes en jeu dans les écoulements turbulents naturels, à savoir le cisaillement, le gradient de température, la stratification, l'hélicité, et des combinaisons de ces éléments. On procède en deux étapes: tout d'abord, l'EDQNM permet de fermer les équations des moments d'ordre 2, et ensuite l'anisotropie est modélisée grâce à des tenseurs moyennés sphériquement. Cette méthode est appliquée aux différentes configurations mentionnées ci-dessus, nous permet de proposer de nouveaux résultats et de les valider numériquement à grands nombres de Reynolds. Parmi les points les plus importants, nous nous sommes concentrés sur (i) la prédiction des lois de croissance et décroissance de quantités telles que l'énergie cinétique, la variance scalaire et l'hélicité; (ii) la détermination des comportements spectraux; et (iii) la distribution d'anisotropie échelle par échelle.Modelling is essential to understand and reproduce the dominant physical mechanisms occurring in natural turbulent flows such as atmospheric and oceanic ones. Indeed, the dynamics of geophysical flows results of multiple complex processes interacting with each others, at various scales, intensities, and on different characteristic times. The fine description of such flows is currently out of reach of direct numerical simulations, notably because of Reynolds numbers limitations. Consequently, we address in this thesis the modelling of homogeneous turbulence, using the spectral formalism of the eddy-damped quasi-normal Markovian (EDQNM) approximation. This first allows us to obtain results rapidly in terms of computational resources at very large Reynolds numbers, and thus to investigate separately some of the fundamental mechanisms at stake in natural turbulent flows, namely shear, mean temperature gradient, stratification, helicity, and combinations of these processes. In this framework, a two-step approach is considered: first, EDQNM is used to close the non-linear terms in the second-order moments equations, and anisotropy is then modelled through spherically-averaged tensors. This methodology is applied to the various configurations mentioned above, permits to propose new theoretical results, and to assess them numerically at large Reynolds numbers. Among the most important findings, we focused on (i) the prediction of the decay and growth laws of crucial one-point statistics such as the kinetic energy, the scalar variance, and helicity; (ii) the determination of spectral scalings; and (iii) the scale by scale distribution of anisotropy

    Dynamics of helicity in homogeneous skew-isotropic turbulence

    No full text
    International audienceThe dynamics of helicity in homogeneous skew-isotropic freely decaying turbulence is investigated, at very high Reynolds numbers, thanks to a classical eddy-damped quasi-normal Markovian (EDQNM) closure. In agreement with previous direct numerical simulations , a k^{-5/3} inertial range is obtained for both the kinetic energy and helical spectra. In the early stage of the decay, when kinetic energy, initially only present at large scales, cascades towards small scales, it is found that helicity slightly slows down the non-linear transfers. Then, when the turbulence is fully developed, theoretical decay exponents are derived and assessed numerically for helicity. Furthermore, it is found that the presence of helicity does not modify the decay rate of the kinetic energy with respect to purely isotropic turbulence, except in Batchelor turbulence where the kinetic energy decays slightly more rapidly. In this case, non-local expansions are used to show analytically that the permanence of large eddies hypothesis is verified for the helical spectrum, unlike the kinetic energy one. Moreover, the 4/3 rd law for the two-point helical structure function is assessed numerically at very large Reynolds numbers. Afterwards, the evolution equation of the helicity dissipation rate is investigated analytically, which provides significant simplifications and leads notably to the definition of a helical derivative skew-ness and of a helical Taylor scale, which is numerically very close to the classical Taylor longitudinal scale at large Reynolds numbers. Finally, when both a mean scalar gradient and helicity are combined, the quadrature spectrum, linked to the antisymmetric part of the scalar flux, appears and scales in k^{-7/3} and then in k^{-5/3} in the inertial range

    The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity

    Get PDF
    International audienceDecaying homogeneous and isotropic magnetohydrodynamics (MHD) turbulence is investigated numerically at large Reynolds numbers thanks to the eddy-damped quasi-normal Markovian (EDQNM) approximation. Without any background mean magnetic field, the total energy spectrum E scales as k −3/2 in the inertial range as a consequence of the modelling. Moreover, the total energy is shown, both analytically and numerically, to decay at the same rate as kinetic energy in hydrodynamic isotropic turbulence: this differs from a previous prediction, and thus physical arguments are proposed to reconcile both results. Afterwards, the MHD turbulence is made imbalanced by an initial non-zero cross-helicity. A spectral modelling is developed for the velocity-magnetic correlation in a general homogeneous framework, which reveals that cross-helicity can contain subtle anisotropic effects. In the inertial range, as the Reynolds number increases, the slope of the cross-helical spectrum becomes closer to k −5/3 than k −2. Furthermore, the Elsässer spectra deviate from k −3/2 with cross-helicity at large Reynolds numbers. Regarding the pressure spectrum E P , its kinetic and magnetic parts are found to scale with k −2 in the inertial range, whereas the part due to cross-helicity rather scales in k −7/3. Finally, the two 4/3rd laws for the total energy and cross-helicity are assessed numerically at large Reynolds numbers

    Prandtl number effects in decaying homogeneous isotropic turbulence with a mean scalar gradient

    No full text
    International audienceDecaying homogeneous isotropic turbulence with an imposed mean scalar gradient is investigated numerically, thanks to a specific eddy-damped quasi-normal Markovian (EDQNM) closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence [Briard et al., J. Fluid Mech. 799 (2016)] (BGC). The present modelling is compared successfully with recent direct numerical simulations and other models, for both very large and small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in the inertial range are recovered analytically and numerically. Then, at large Reynolds numbers , the decay and growth laws for the scalar variance and mixed velocity-scalar correlations respectively, derived in (BGC), are shown numerically to remain valid when the Prandtl number strongly departs from unity. Afterwards, the normalized correlation ρ_wθ is found to decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar second-order moments is found to depend not only on the Reynolds number, but also on the Prandtl number

    Mixed-derivative skewness for high Prandtl and Reynolds numbers in homogeneous isotropic turbulence

    No full text
    International audienceThe mixed-derivative skewness S_uθ of a passive scalar field in high Reynolds and Prandtl numbers decaying homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal markovian closure, for Re_λ ≥ 10^3 up to Pr = 10^5. A convergence of S_uθ for Pr ≥ 10^3 is observed for any high enough Reynolds number. This asymptotic high Pr regime can be interpreted as a saturation of the mixing properties of the flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the influence of large scales initial conditions are investigated as well
    corecore